

Pratik Rathore — US Citizen

✉ (301) 250 6870

✉ pratikr@stanford.edu

🌐 pratikrathore8.github.io

LinkedIn pratikrathore

GitHub pratikrathore8

Education

Stanford University

PhD Candidate in Electrical Engineering

Stanford, CA

9/2021-Present

Stanford University

M.S. in Electrical Engineering

Stanford, CA

9/2021-12/2024

University of Maryland

B.S. in Electrical Engineering, summa cum laude

College Park, MD

8/2017-5/2021

University of Maryland

B.S. in Mathematics, summa cum laude

College Park, MD

8/2017-5/2021

Research & Industry Experiences

Stanford University

Research Assistant

Stanford, CA

7/2022-Present

Department of Management Science & Engineering

- Developing optimization algorithms leveraging randomized numerical linear algebra to address scalability and stability challenges in training machine learning models
- Creating and maintaining high-quality, open-source implementations of these methods; adopted in popular machine learning libraries such as DeepXDE
- Applying scientific machine learning to solve PDE-governed problems in geophysics

Skyworks Solutions

Irvine, CA

6/2025-8/2025

Machine Learning & AI Intern

Technology & Manufacturing Data Analytics Team

- Led development of a Python library that automates circuit topology generation and simulation configuration for designing radio frequency (RF) filters, reducing design times from one to two weeks to 7-8 hours
- Collaborated with software engineers to build a web application allowing circuit designers to interface with the automated topology library
- Designed an AI-driven circuit design automation system and implemented prototype workflows

Gridmatic

Cupertino, CA

6/2024-9/2024

Research Scientist Intern

Power Trading & Optimization Team

- Applied scenario reduction to reduce runtime for solving linear programs in battery scheduling, while preserving profits
- Developed a new backtest framework that accounts for Gridmatic's price impact in ERCOT market
- Formulated, implemented, and tested price impact models based on residual demand curves
- Proposed an ADMM-based algorithm for price impact-aware portfolio optimization

Stanford University <i>Research Assistant</i> <i>Autonomous Systems Laboratory</i>	Stanford, CA 9/2021-12/2021, 3/2022-6/2022
○ Developed a quantum computing-based algorithm to solve mixed-integer quadratic programs (MIQPs)	
○ Applied matrix sketching techniques to improve scalability of semidefinite programming-based neural network verification	
STR <i>Electrical Engineering Intern</i> <i>Prototype Systems & Technology Group</i>	Arlington, VA 5/2020-8/2021
○ Aided in the development of an object-oriented environment for radar I/Q simulation, and modeled sub-banded adaptive beamforming in phased arrays	
○ Contributed to data generation for a deep learning-based platform that performs automatic target recognition on maritime ISAR images	
○ Worked on a US Department of Defense funded SBIR research project focused on improving Inverse Synthetic Aperture Radar (ISAR) signal processing to enhance ISAR image quality	
Lockheed Martin Space <i>Electrical Engineering Intern</i> <i>Military Support Programs</i>	Littleton, CO 5/2019-8/2019
○ Led reviews for computational models (frequency sweep generator, solar array controller, attitude determination with Kalman filter) being developed for satellites in MATLAB/Simulink	
○ Developed test cases, added new functionality, and improved upon existing documentation in MATLAB/Simulink for these computational models	
○ Presented model walkthroughs and review suggestions to colleagues during meetings	
University of Maryland <i>Undergraduate Researcher</i> <i>Department of Mathematics</i>	College Park, MD 5/2018-8/2018
○ Investigated Descartes numbers, a family of odd spoof perfect numbers	
○ Proved new results regarding the prime factorizations of Descartes numbers	
○ Developed and submitted a research manuscript containing the proofs of these results to arXiv	

Papers

In the pipeline.....

P. Rathore, Z. Frangella, J. Yang, M. Dereziński, and M. Udell. *Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression*. Submitted, 2025, arxiv:2407.10070

Published.....

P. Rathore, Z. Frangella, S. Garg, S. Fazliani, M. Dereziński, and M. Udell. *Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project*. NeurIPS, 2025, arxiv:2505.13723

Z. Frangella, **P. Rathore**, S. Zhao, and M. Udell. *SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates*. SIMODS, 2024, arxiv:2211.08597

Z. Frangella*, **P. Rathore***, S. Zhao, and M. Udell. *PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates*. JMLR, 2024, arxiv:2309.02014

* denotes equal contribution.

P. Rathore, W. Lei, Z. Frangella, L. Lu, and M. Udell. *Challenges in Training PINNs: A Loss Landscape Perspective*. ICML, 2024, arxiv:2402.01868 (**Oral, top 1.5% of all submissions**)

Miscellaneous.....

P. Rathore. *There are no Cube-free Descartes Numbers with Exactly Seven Distinct Prime Factors* (2018), arxiv:1808.10027

Talks & Posters

ScaleOPT: GPU-Accelerated and Scalable Optimization, NeurIPS (San Diego)	12/2025
<i>GPU-enabled large-scale optimization using randomized linear algebra</i>	
Poster, NeurIPS (San Diego)	12/2025
<i>Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project</i>	
INFORMS Computing Society Conference (Toronto)	3/2025
<i>ASkotch: A Fast Method for Large-scale Kernel Ridge Regression</i>	
INFORMS Computing Society Conference (Toronto)	3/2025
<i>Preconditioned Stochastic Gradient Algorithms for Faster Empirical Risk Minimization</i>	
The Alan Turing Institute (online)	10/2024
<i>Challenges in Training PINNs: A Loss Landscape Perspective</i>	
Bridging the Farm: AI for Science at SLAC and Stanford (Stanford)	10/2024
<i>Challenges in Training PINNs: A Loss Landscape Perspective</i>	
Naval Surface Warfare Center, Carderock Division (online)	8/2024
<i>Challenges in Training PINNs: A Loss Landscape Perspective</i>	
Oral Presentation, ICML (Vienna)	7/2024
<i>Challenges in Training PINNs: A Loss Landscape Perspective</i>	
Lu Group, Yale University (online)	2/2024
<i>Challenges in Training PINNs: A Loss Landscape Perspective</i>	
Gridmatic (Cupertino)	2/2024
<i>PROMISE: Preconditioned Stochastic Optimization via Scalable Curvature Estimates</i>	

Honors & Awards

Banneker-Key Scholar – a full merit scholarship awarded to top 1% of undergraduates	2017-2021
Dean's List – A. James Clark School of Engineering	2017-2021
Dean's List – College of Computer, Mathematical, & Natural Sciences	2018-2021
Honors College, University Honors, University of Maryland	2017-2021
University of Maryland Department of Mathematics High Honors Medal	5/2021
NSF GRFP Honorable Mention	3/2021
University of Maryland Department of Electrical and Computer Engineering Chair's Award	3/2021
International Mathematics Competition for University Students, Second Prize	7/2020
Putnam Math Competition, Ranked in Top 5% of 4200+ Participants	2/2020
Member of UMD Putnam Team, 14 th place team in the nation	2/2020
University of Maryland Dan Shanks Award for research in number theory	4/2019
Putnam Math Competition, Ranked in Top 3% of 4600+ Participants	3/2019

Member of UMD Putnam Team, 9 th place team in the nation	3/2019
Virginia Tech Regional Math Contest, Ranked 15 th out of 739 participants	10/2017
United States of America Mathematical Olympiad (USAMO) Qualifier	5/2017

Skills

Programming Languages & Frameworks

- *Proficient*: Python, PyTorch, NumPy, MATLAB, L^AT_EX
- *Familiar*: Pandas, C/C++, Julia, Java, R, Simulink

Advising

Weimu Lei, MS ICME

6/2023-8/2024

Projects: Physics-informed neural networks; software for fast convex optimization

Academic Service

Reviewing

AISTATS 2023, ICML 2024, NeurIPS 2024, ICML 2025, NeurIPS 2025

Organized Seminars/Sessions

ISL Colloquium

Co-organizer (with Connor Lawless, Irmak Sivgin, and Madeleine Udell)

Stanford, CA

9/2025-Present

INFORMS: Advances in Optimization for Machine Learning

Co-organizer (with Zachary Frangella and Madeleine Udell)

Seattle, WA

10/2024

Teaching

CME307: Optimization

Course Assistant

Stanford University

9/2025-Present

CME307: Optimization

Course Assistant

Stanford University

9/2024-12/2024

CME307: Optimization

Course Assistant

Stanford University

1/2024-3/2024

EE364B: Convex Optimization II

Course Assistant

Stanford University

4/2023-6/2023

ENEE150: Intermediate Programming Concepts for Engineers

Undergraduate Teaching Fellow

University of Maryland

1/2021-5/2021

Relevant Courses

Machine Learning, Machine Learning for Sequence Modeling, Machine Learning for Discrete Optimization, Reinforcement Learning, Convex Optimization, Theory of Statistics, Numerical Linear Algebra, Parallel Computing